Additional Example to Practice with Regular Grammars Martha Kosa

In the lesson, you learned the format for a regular grammar and developed a grammar for simple arithmetic expressions. Now you can practice with another example (or a few).

In your earlier schooling, you learned simple divisibility tests for numbers. For example, you learned that an integer is divisible by 5 if its last digit is a 0 or 5 and that an integer is even if its last digit is a 0, 2, 4, 6, or 8.

Let us first design a grammar to generate all strings of decimal digits such that the represented integer is divisible by 5.

Every grammar needs a start symbol/variable. The convention is to call it S. What are the special digits that we need to consider? They are **0** and **5**, because if the string ends with one of those two symbols, it is a valid string. So we need to treat the other digits, namely **1**, **2**, **3**, **4**, **6**, **7**, **8**, and **9** differently, because a valid string cannot end with those digits. We can repeat these digits as long as we want. So this suggests 8 recursive right-linear rules involving S. Remember that a **recursive** grammar rule has the same variable appearing on both the left and right-hand sides of the rule.

Try It!

Start JFLAP and click the Grammar button. Enter the 8 recursive rules discussed previously.

Questions to Think About:

- 1. As the grammar currently exists, can any terminal strings be generated? Why or why not?
- 2. With the current grammar, what happens if a 0 or 5 appears in a string?

Try It! (continued)

Now we need to deal with the 0 and 5 digits that must appear at the end of any valid string. We should have a new variable. You can call it by any letter that you wish, but a good mnemonic letter would be **E**. We need two new right-linear rules with S on the left-hand side. Enter these two rules.

Questions to Think About:

- 1. As the grammar currently exists, can any terminal strings be generated? Why or why not?
- 2. With the current grammar, how many times can a 0 or a 5 appear in a string?

Try It! (continued)

Now we need to finish the grammar. If a valid string must end in a 0 or 5, what is the effect of having multiple 0's and/or 5's? Add two recursive right-linear rules to handle all possibilities. Add one rule to properly stop the recursion. Remember that only one 0 or 5 is required at the end of any valid string. Save your grammar using a descriptive file name, and remember to save when you make changes.

Questions to Think About:

- 1. Can the string 123450500 be generated by your grammar? Why or why not?
- 2. Can the string 1234567895 be generated by your grammar? Why or why not?

Try It! (continued)

We are at the final step. You need to add 8 more right-regular rules to be finished to allow multiple clusters of digits that are neither 0's nor 5's. Save your grammar file with a descriptive name. Run some test strings. Check its type to make sure it is right-linear. Make sure only valid strings are generated by selecting *Input* > *Generate Language* and then entering 1 and pressing the **String Length** button. Do the same task for strings of lengths 2 and 3, respectively. What happens when you attempt to generate strings of length 4? Your grammar should look similar to the grammar from the file **DivisibleBy5.RG.jflap.**

As a challenge, modify your grammar so that **0** is the only string starting with **0** that can be generated.

You may have noticed that it might have been easier to design a left-linear grammar since we only want to generate strings that end with a 0 or a 5. Design a left-linear grammar to generate the same set of strings that your original right-linear grammar does. As an additional challenge, modify your grammar so that 0 is the only string starting with 0 that can be generated.

Questions to Think About:

- 1. How would you modify your grammars to allow negative integers to be generated, too?
- 2. How would a regular grammar generating strings of decimal digits representing **even** numbers differ from the grammar you just designed?
- 3. How would a regular grammar generating strings of decimal digits representing **odd** numbers differ from the grammar generating even numbers?
- An integer is divisible by 4 if the integer represented by its rightmost two digits is divisible by
 Design a regular grammar generating strings of decimal digits representing numbers divisible by 4.
- 5. An integer is divisible by 3 if the sum of all its digits is divisible by 3. Design a regular grammar generating strings of decimal digits representing numbers divisible by 3. As a hint, review the Quotient-Remainder Theorem typically studied in discrete mathematics. Also, think about what happens to the value of a number when a digit is appended to its right-hand side. For example, what is the relationship between 123 and 1234?